4 research outputs found

    Modeling Method of Finite Element Modeler and Electromagnetic Solvers for Education and Research in RF MEMS

    Get PDF
    Field of electronics engineering is the most captivating among students, researchers and academicians now-adays. With the passage of time the requirement of advance tools for engineering is increasing. Many institutions and universities around the globe provide quality education to various engineering domain. Students although study theory courses but they also need exposure that how theory can be related to actual devices. Simulations play an important role for relating theoretical components to the virtual practical environment. Students of Radio Frequency (RF) domain and especially students that are studying Microelectromechanical Systems (MEMS) as courses, due to the extreme complexity of these devices, students need multiple tools to simulate the performance parameters. This paper highlights the most prominent tools that are used in the industry to design and implement RF MEMS structures. The role of Electromagnetic (EM) solvers and Finite Element Modeller (FEM) and its impact on electronics engineering education is demonstrated. Modeling approach of these tools are also explained. These tools and due to there huge advantages, electronics graduates should study these tools in their course curriculum to know how to tackle various types of RF problems and through case studies, it is demonstrated that how these tools can aid shift from just theoretical study to virtual practical environment

    Electro-Mechanical Performance Analysis of RF MEMS Switches

    Get PDF
    The feasibility of integrating the RF MEMS switches in space and wireless communication systems has generated tremendous interest in related design, fabrication and characterization methodologies. The space applications make long term reliability of the devices a very pertinent issue and involves both the process and device characterization. In this paper we describe the experimental setup and measurement results on RF MEMS switches fabricated for DC to 30GHz applications. The on-wafer experimental setup, based on standard manual microprobe station provides dual pulse actuation voltage waveforms with programmable period and amplitude. The usefulness of the dual-pulse testing is demonstrated by the minimal charge generation in the dielectric layer and capacitance measurements with negligible variations over long measurement periods
    corecore